首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353333篇
  免费   46808篇
  国内免费   37435篇
电工技术   31370篇
技术理论   17篇
综合类   36034篇
化学工业   49937篇
金属工艺   15735篇
机械仪表   27576篇
建筑科学   27688篇
矿业工程   7991篇
能源动力   13105篇
轻工业   18507篇
水利工程   12372篇
石油天然气   12751篇
武器工业   4608篇
无线电   40055篇
一般工业技术   39469篇
冶金工业   10056篇
原子能技术   5023篇
自动化技术   85282篇
  2024年   821篇
  2023年   5216篇
  2022年   9243篇
  2021年   11925篇
  2020年   12083篇
  2019年   10807篇
  2018年   10172篇
  2017年   13478篇
  2016年   15155篇
  2015年   16800篇
  2014年   19595篇
  2013年   23286篇
  2012年   26933篇
  2011年   29703篇
  2010年   22239篇
  2009年   22586篇
  2008年   23572篇
  2007年   26655篇
  2006年   24459篇
  2005年   21034篇
  2004年   17506篇
  2003年   14315篇
  2002年   11092篇
  2001年   8678篇
  2000年   7212篇
  1999年   5709篇
  1998年   4677篇
  1997年   3878篇
  1996年   3475篇
  1995年   3106篇
  1994年   2627篇
  1993年   1916篇
  1992年   1577篇
  1991年   1248篇
  1990年   1029篇
  1989年   796篇
  1988年   562篇
  1987年   352篇
  1986年   299篇
  1985年   344篇
  1984年   323篇
  1983年   188篇
  1982年   273篇
  1981年   142篇
  1980年   155篇
  1979年   81篇
  1978年   33篇
  1977年   33篇
  1974年   18篇
  1959年   37篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
31.
梯度分层铝合金蜂窝板是一种有效的吸能结构,本工作在梯度铝蜂窝结构的基础上根据梯度率的概念,通过改变蜂窝芯层的胞壁长度,设计了4种质量相同、梯度率不同的铝蜂窝夹芯结构。通过准静态压缩实验,并结合非线性有限元模拟准静态及冲击态下梯度铝蜂窝夹芯结构的变形情况及其力学性能,分析对比了相同质量下梯度铝蜂窝夹芯结构在准静态下的变形模式以及冲击载荷下分层均质蜂窝结构和不同梯度率的分层梯度蜂窝结构的动态响应和能量吸收特性。结果表明:在准静态压缩过程中,铝蜂窝梯度夹芯板的变形具有明显的局部化特征,蜂窝芯的变形为低密度优先变形直至密实,层级之间的密实化应变差随芯层密度的增大而逐渐减小;在高速冲击下,梯度蜂窝板并非严格按照准静态过程中逐级变形直至密实,而是在锤头冲击惯性及芯层密度的相互作用下整体发生的线弹性变形、弹性屈曲、塑性坍塌及密实化;另外,在本工作所设计的梯度率中,当梯度率为γ1=0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量下的均质蜂窝夹芯板,能量吸收提高了10.63%。  相似文献   
32.
The impact of graphite nanoplatelets (GNPs) on the physical and mechanical properties of cementitious nanocomposites was investigated. A market-available premixed mortar was modified with 0.01% by weight of cement of commercial GNPs characterized by two distinctively different aspect ratios.The rheological behavior of the GNP-modified fresh admixtures was thoroughly evaluated. Hardened cementitious nanocomposites were investigated in terms of density, microstructure (Scanning Electron Microscopy, SEM and micro–Computed Tomography, μ-CT), mechanical properties (three-point bending and compression tests), and physical properties (electrochemical impedance spectroscopy, EIS and thermal conductivity measurements). At 28 days, all GNP-modified mortars showed about 12% increased density. Mortars reinforced with high aspect ratio GNPs exhibited the highest compressive and flexural strength: about 14% and 4% improvements compared to control sample, respectively. Conversely, low aspect ratio GNPs led to cementitious nanocomposites characterized by 36% decreased electrical resistivity combined with 60% increased thermal conductivity with respect to the control sample.  相似文献   
33.
《Ceramics International》2021,47(19):26891-26897
KLS-1 Lunar regolith simulant was microwave sintered to explore its potential applicability in future lunar construction. The effects of sintering temperature on linear shrinkage, density, porosity, and microstructural, mechanical, and thermal properties were investigated. As the sintering temperature increased, linear shrinkage and density increased and porosity decreased. Structural evolution in the sintered samples was characterized by scanning electron microscopy and X-ray diffraction. Unconfined compressive strength testing showed that mechanical strength increased significantly with increasing sintering temperature, with 1120 °C giving the highest strength of 37.0 ± 4.8 MPa. The sintered samples exhibited a coefficient of thermal expansion of approximately 5 × 10−6 °C−1, which was well-maintained even after cyclic temperature stress between −100 and 200 °C. Therefore, this microwave processing appears promising for the fabrication of building material with sufficient mechanical strength and thermal durability for lunar construction.  相似文献   
34.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
35.
Multicolor upconversion luminescence materials show significantly applications in materials science. In this paper, the novel Yb3+-sensitized Na3La(VO4)2 upconversion luminescence crystals are synthesized by the solid-state reaction method. Three primary colors upconversion luminescence are successfully achieved in Na3La(VO4)2:Yb3+,Tm3+, Na3La(VO4)2:Yb3+,Er3+, and Na3La(VO4)2:Yb3+,Ho3+ crystals excited by the single 980 nm LD. Multicolor upconversion luminescence can be obtained by simply adjusting the combination ratios of these three samples. Luminescence mechanisms of the Yb3+-sensitized system are discussed in detail. In the Na3La(VO4)2 host material, the Yb3+/Ho3+ codoped system exhibits unusual red upconversion luminescence based on the short decay time of Ho3+ ion 5I6 level, which provides the possibility of three primary color luminescence under 980 nm excitation.  相似文献   
36.
37.
Canisters with a cast iron insert for mechanical strength and a 50-mm thick copper shell as corrosion protection are planned to be used for disposal of spent nuclear fuel in Sweden and Finland. Chloride can be considered “beneficial”, as it promotes active dissolution of copper rather than passivation (which might result in pitting), but a high concentration of chloride in solution would increase the driving force for corrosion through the formation of soluble copper chloro complexes. Thermodynamic calculations are performed in this study with the PHREEQC software and three of its accompanying databases, and a comparison with experimental data is performed to select the database to be used when evaluating repository performance. The activity coefficient models are given special attention. For the assessment of chloride-assisted corrosion of a KBS-3 canister, chloride concentrations pessimistically up to 5 mol/kg are used (in Finland and Sweden, the groundwater and bentonite porewater chloride concentrations are not expected to exceed 1 mol/kg). The resulting copper solubilities are then considered in different mass transport cases.  相似文献   
38.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
39.
5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We analyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic drift. We tested primary fibroblast cultures originating from individuals aged 22–35 years and 74–94 years. Global quantities of methylation-related DNA modifications were estimated by the dot blot and colorimetric methods. Regions of the genome differentially hydroxymethylated with age (DHMRs) were identified by hMeDIP-seq and the MEDIPS and DiffBind algorithms. Global levels of DNA modifications were not associated with age. We identified numerous DHMRs that were enriched within introns and intergenic regions and most commonly associated with the H3K4me1 histone mark, promoter-flanking regions, and CCCTC-binding factor (CTCF) binding sites. However, only seven DHMRs were identified by both algorithms and all of their settings. Among them, hypo-hydroxymethylated DHMR in the intron of Rab Escort Protein 1 (CHM) coexisted with increased expression in old cells, while increased 5-hydroxymethylation in the bodies of Arginine and Serine Rich Protein 1 (RSRP1) and Mitochondrial Poly(A) Polymerase (MTPAP) did not change their expression. These age-related differences were not associated with changes in the expression of any of the ten-eleven translocation (TET) enzymes or their activity. In conclusion, the distribution of 5hmC in DNA of in vivo aged human fibroblasts underwent age-associated modifications. The identified DHMRs are, likely, marker changes.  相似文献   
40.
The study aimed to prepare sustainable and degradable elastic blends of epoxidized natural rubber (ENR) with poly(lactic acid) (PLA) that were reinforced with flax fiber (FF) and montmorillonite (MMT), simultaneously filling the gap in the literature regarding the PLA-containing polymer blends filled with natural additives. The performed study reveals that FF incorporation into ENR/PLA blend may cause a significant improvement in tensile strength from (10 ± 1) MPa for the reference material to (19 ± 2) MPa for the fibers-filled blend. Additionally, it was found that MMT employment in the role of the filler might contribute to ENR/PLA plasticization and considerably promote the blend elongation up to 600%. This proves the successful creation of the unique and eco-friendly PLA-containing polymer blend exhibiting high elasticity. Moreover, thanks to the performed accelerated thermo-oxidative and ultraviolet (UV) aging, it was established that MMT incorporation may delay the degradation of ENR/PLA blends under the abovementioned conditions. Additionally, mold tests revealed that plant-derived fiber addition might highly enhance the ENR/PLA blend’s biodeterioration potential enabling faster and more efficient growth of microorganisms. Therefore, materials presented in this research may become competitive and eco-friendly alternatives to commonly utilized petro-based polymeric products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号